

Spring 2024

INTRODUCTION TO COMPUTER VISION

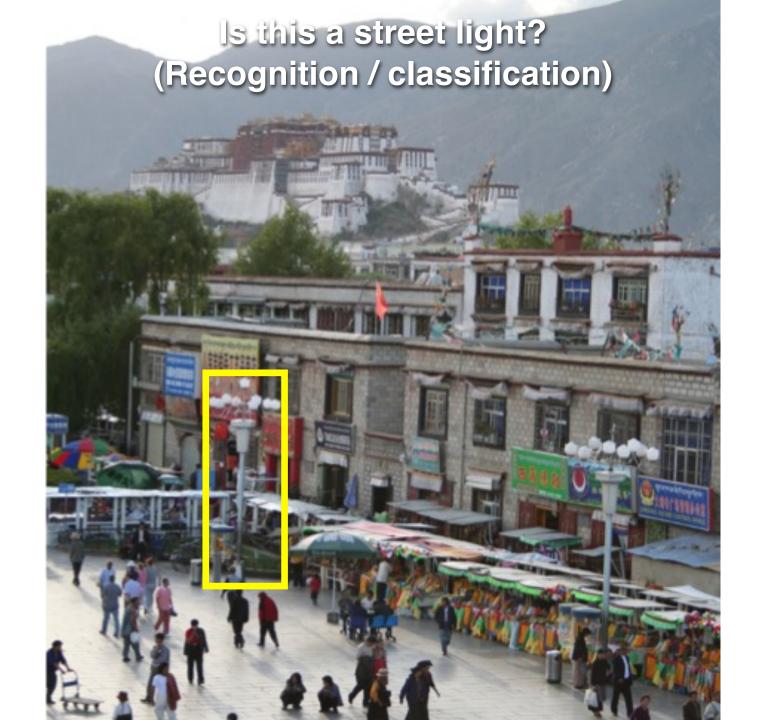
Atlas Wang

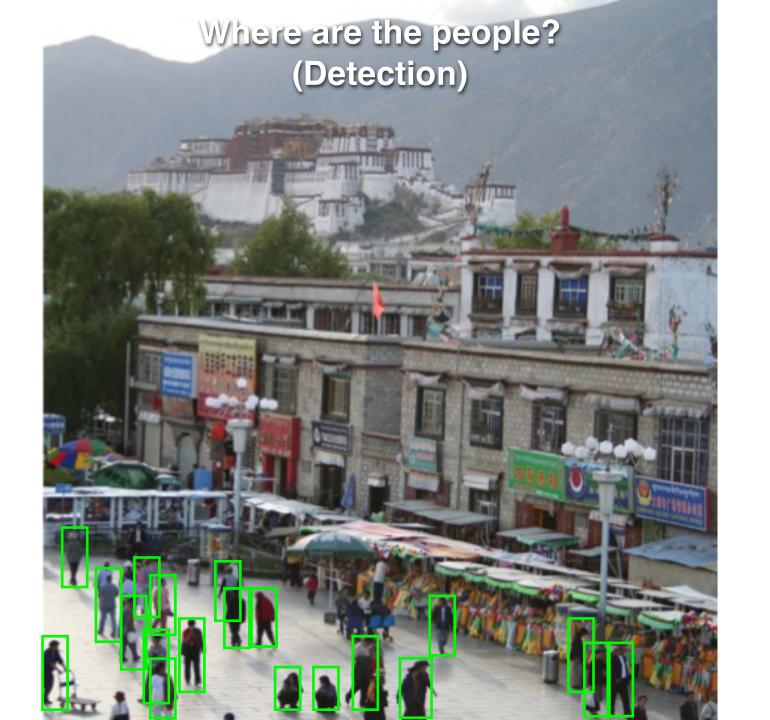
Associate Professor, The University of Texas at Austin

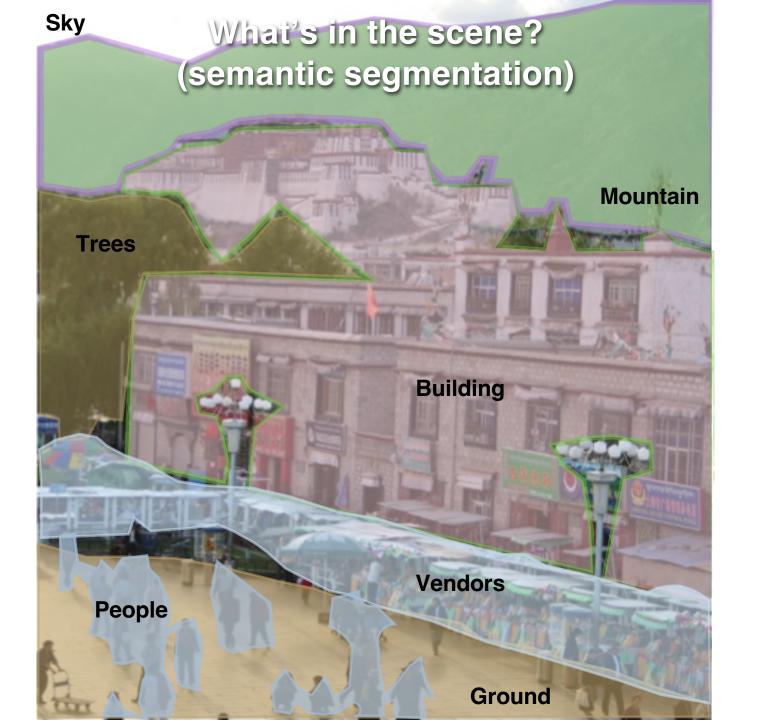
Visual Informatics Group@UT Austin

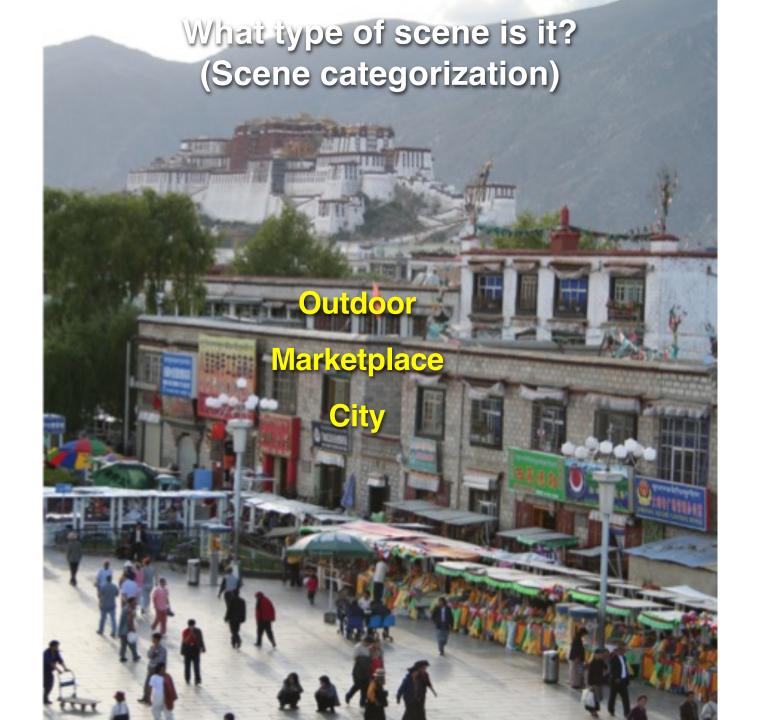
https://vita-group.github.io/

What do we mean by high-level vision or "semantic vision"?

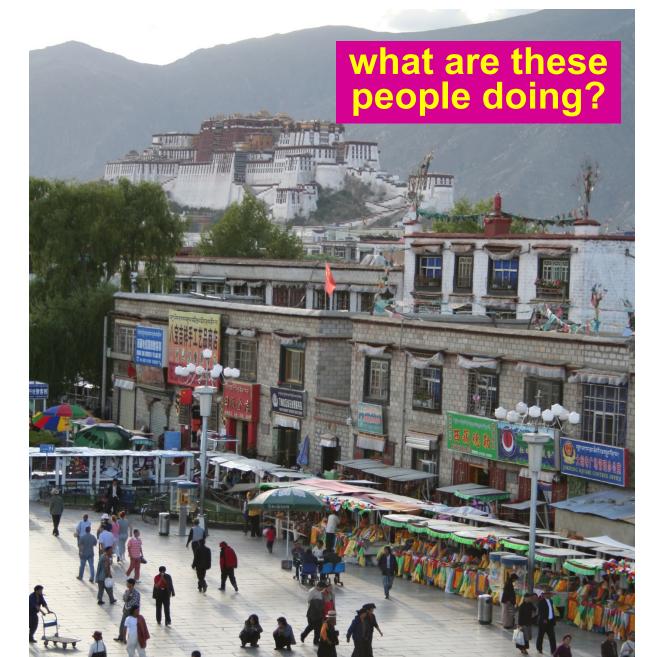








Activity / Event Recognition

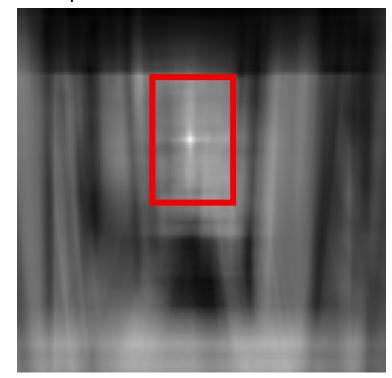


Object recognition Is it really so hard?

This is a chair

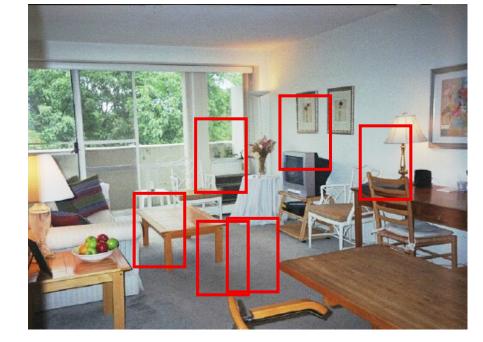
Find the chair in this image

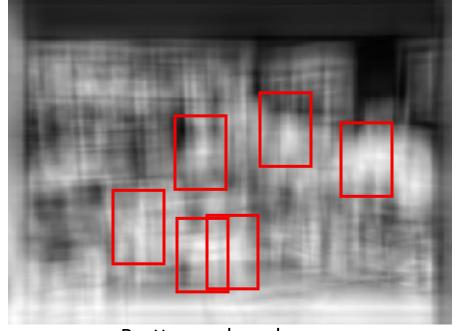
Output of normalized correlation



Object recognition Is it really so hard?

Find the chair in this image

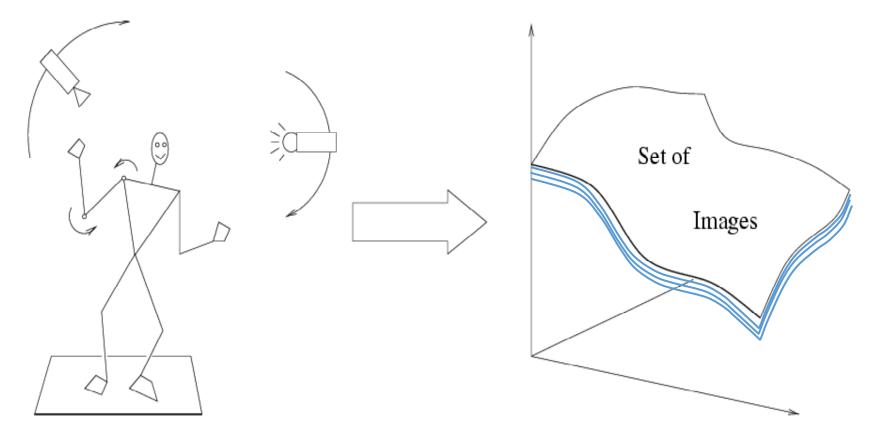




Pretty much garbage
Simple template matching is not going to make it

A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

Why is this hard?

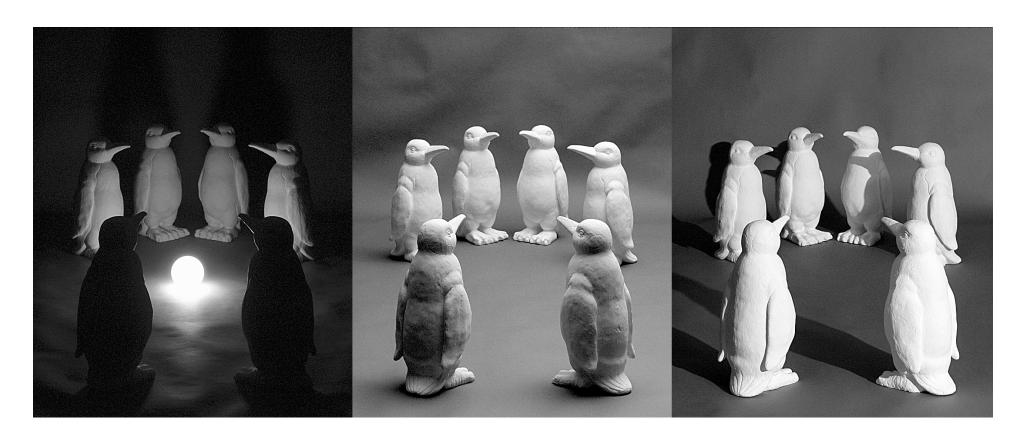


Variability: Camera position
Illumination
Shape parameters

Challenge: variable viewpoint

Michelangelo 1475-1564

Challenge: variable illumination



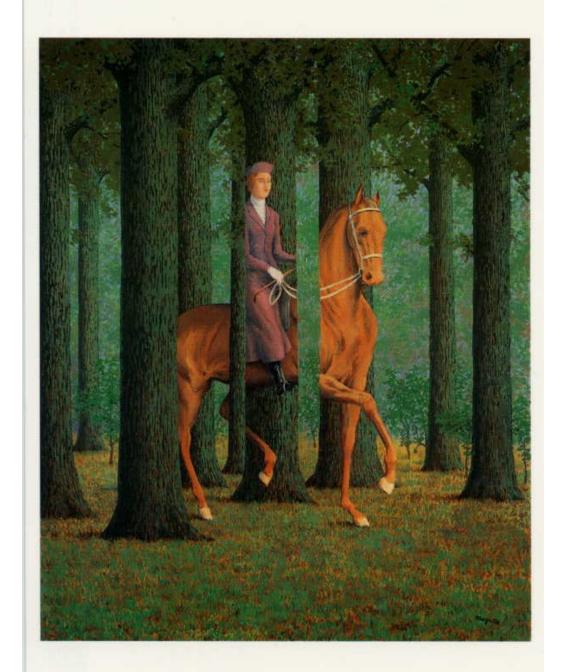
and small things from Apple. (Actual size)

Challenge: scale

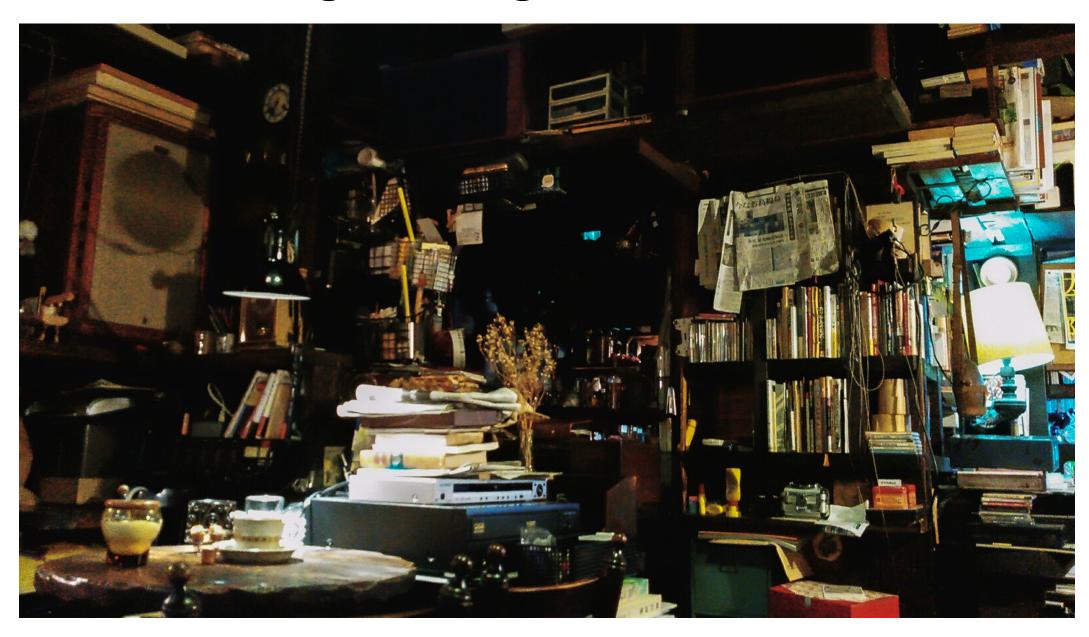
Challenge: deformation

Deformation

Challenge: Occlusion



Challenge: background clutter



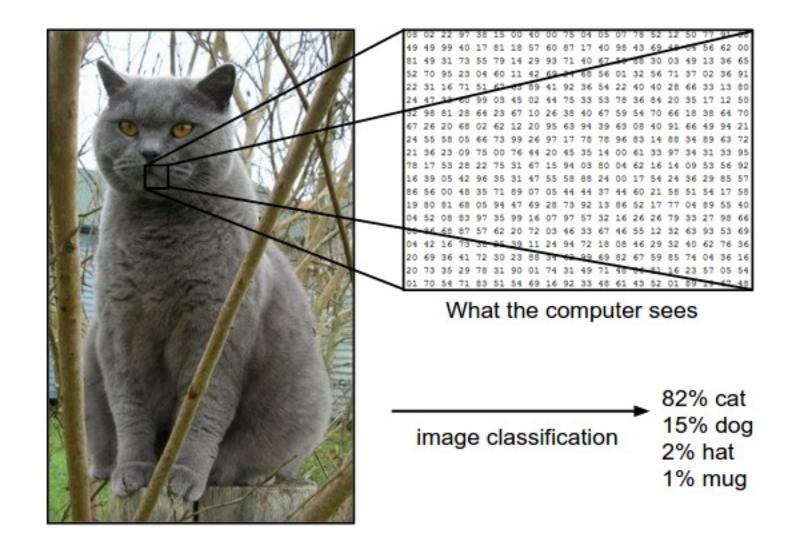
Challenge: intra-class variations

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

Image Classification: Problem



Data-driven approach

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

Example training set

History of Image Classfication

- 1960s –early 1990s: the geometric era
 - Recognition as an alignment problem: the simple "toy block" world ...
- 1990s: appearance-based models
 - PCA (eigenface), color histogram ...
- Mid-1990s: sliding window/template approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features (Today)
- Present trends: deep learning (we will get there)

What object do these parts belong to?

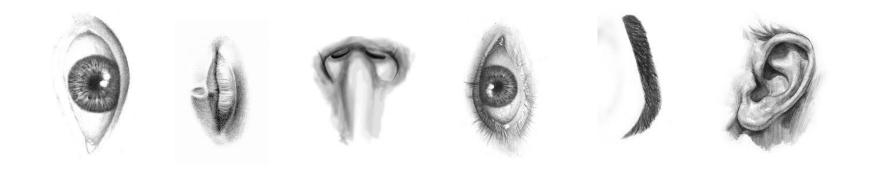
Some local feature are very informative

An object as

a collection of local features (bag-of-features)

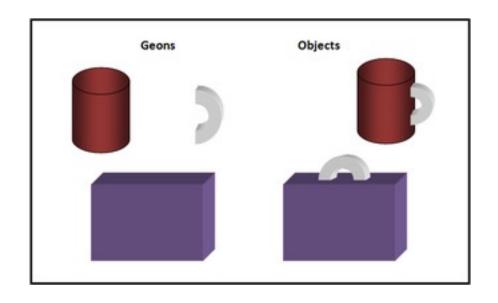
- deals well with occlusion
- scale invariant
- rotation invariant

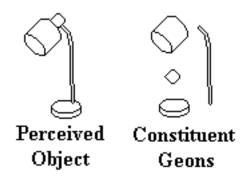
(not so) crazy assumption



spatial information of local features can be ignored for object recognition (i.e., verification)

Recognition-by-Components (RBC) Theory (1987)





- A human learning theory to explain object recognition
- According to RBC theory, we are able to recognize objects by separating them into **geons** (the object's main component parts).
- Geons are based on basic 3-dimensional shapes (cylinders, cones, etc.) that can be assembled in various arrangements to form a virtually unlimited number of objects.
- Very impactful for computer vision recognition!

Bag-of-features

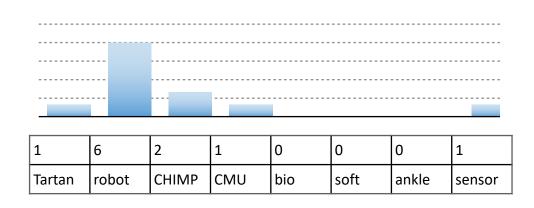
represent a data item (document, texture, image) as a histogram over features

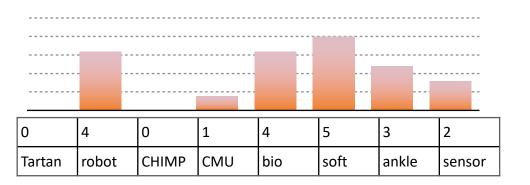
an old idea

(e.g., texture recognition and information retrieval)

Vector Space Model

G. Salton, 'Mathematics and Information Retrieval' Journal of Documentation, 1979





A document (datapoint) is a vector of counts over each word (feature)

$$m{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$
 ocunts the number of occurrences just a histogram over words

What is the similarity between two documents?

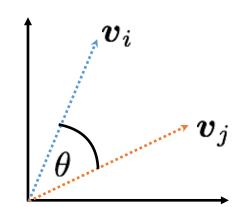
A document (datapoint) is a vector of counts over each word (feature)

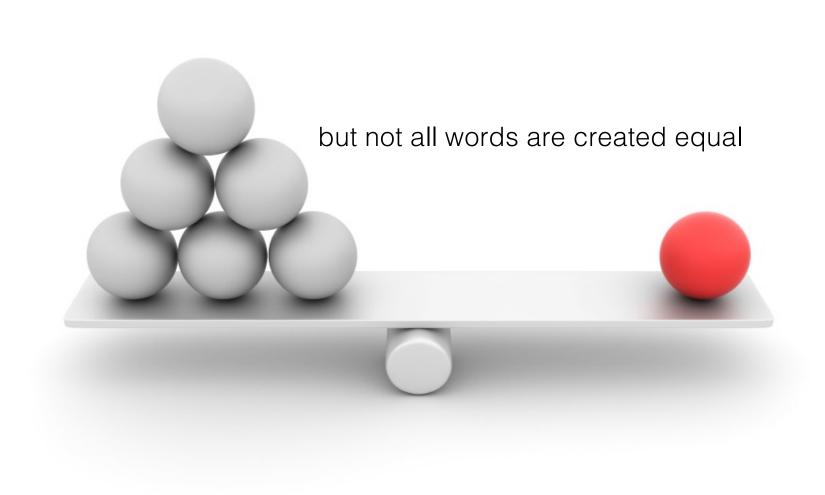
$$m{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$
 just a histogram over words

What is the similarity between two documents?

Use any distance you want but the cosine distance is fast.

$$egin{aligned} d(oldsymbol{v}_i, oldsymbol{v}_j) &= \cos \theta \ &= rac{oldsymbol{v}_i \cdot oldsymbol{v}_j}{\|oldsymbol{v}_i\| \|oldsymbol{v}_j\|} \end{aligned}$$





TF-IDF

Term Frequency Inverse Document Frequency

$$\mathbf{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

weigh each word by a heuristic

$$\boldsymbol{v}_d = [n(w_{1,d})\alpha_1 \ n(w_{2,d})\alpha_2 \ \cdots \ n(w_{T,d})\alpha_T]$$

$$n(w_{i,d})lpha_i = n(w_{i,d})\log\left\{rac{D}{\sum_{d'}\mathbf{1}[w_i\in d']}
ight\}$$

(down-weights **common** terms)

Standard BOW pipeline (for image classification)

Learn Visual Words using clustering

Encode:

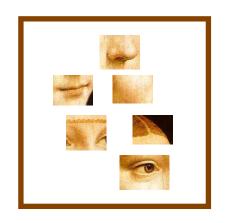
build Bags-of-Words (BOW) vectors for each image

Classify:

Train and test data using BOWs

Learn Visual Words using clustering

1. extract features (e.g., SIFT) from images



Learn Visual Words using clustering

2. Learn visual dictionary (e.g., K-means clustering)

• Regular grid

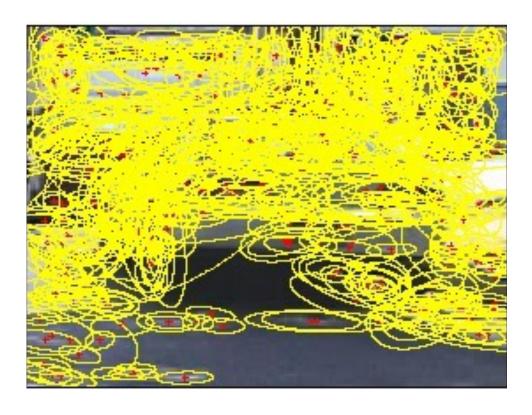
- Vogel & Schiele, 2003
- Fei-Fei & Perona, 2005

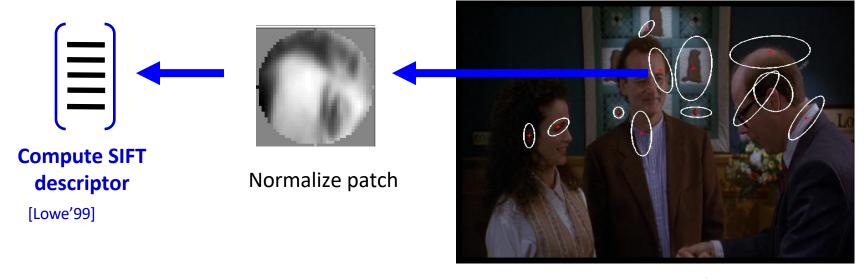
• Interest point detector

- Csurka et al. 2004
- Fei-Fei & Perona, 2005
- Sivic et al. 2005

• Other methods

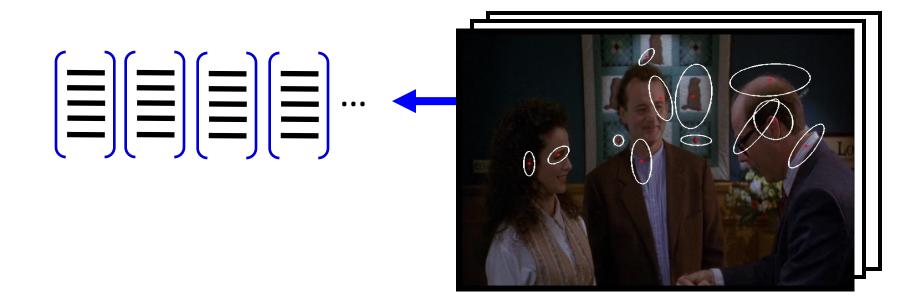
- Random sampling (Vidal-Naquet & Ullman, 2002)
- Segmentation-based patches (Barnard et al. 2003)

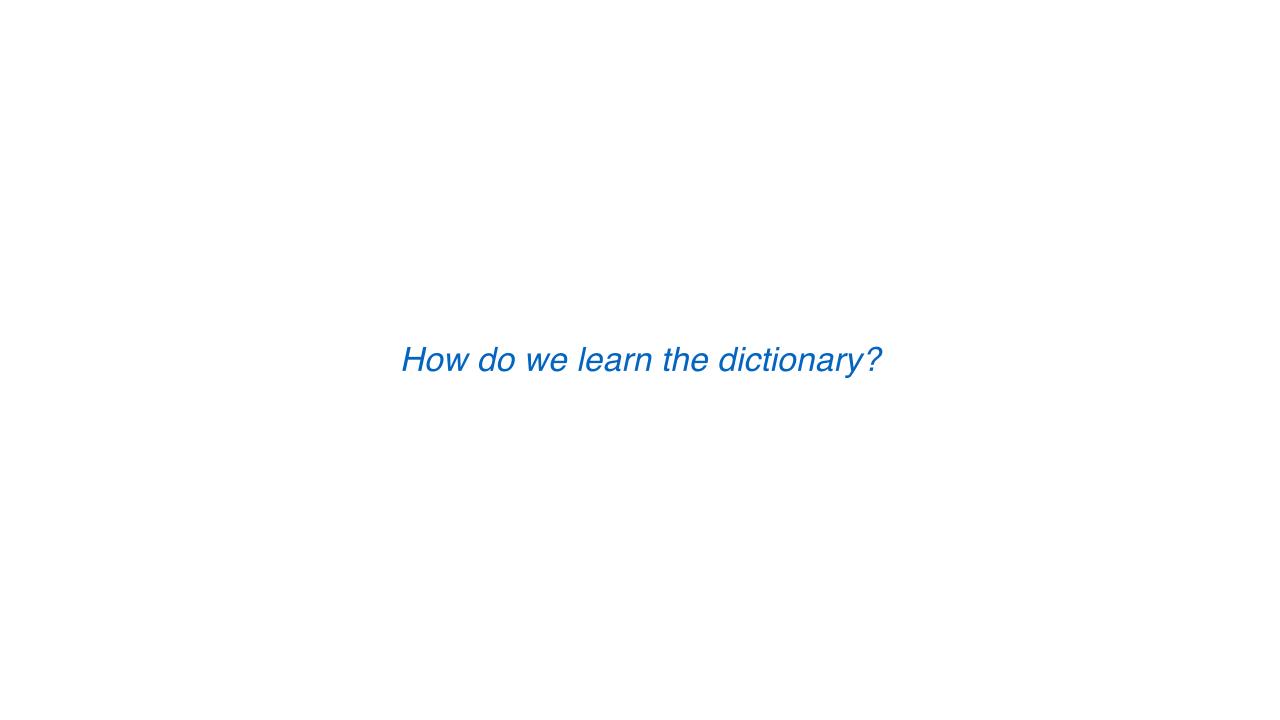


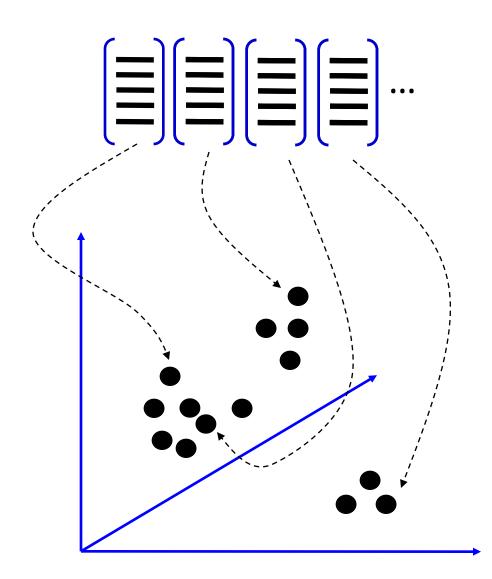


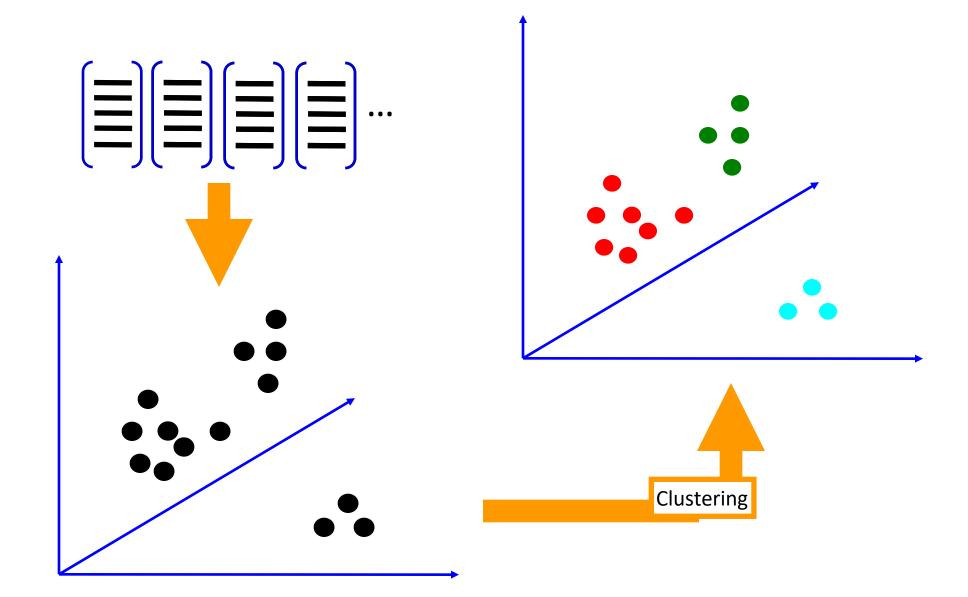
Detect patches

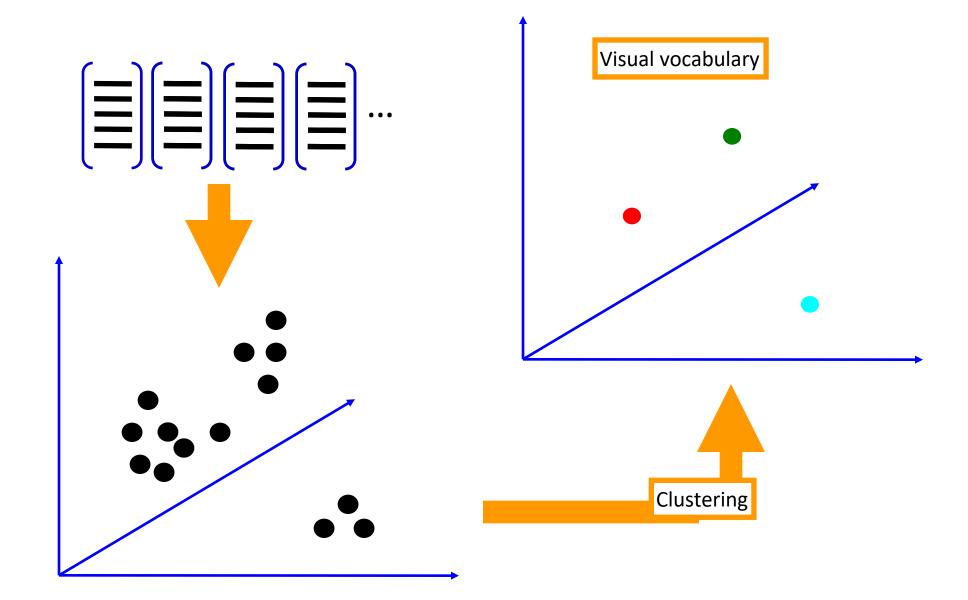
[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]







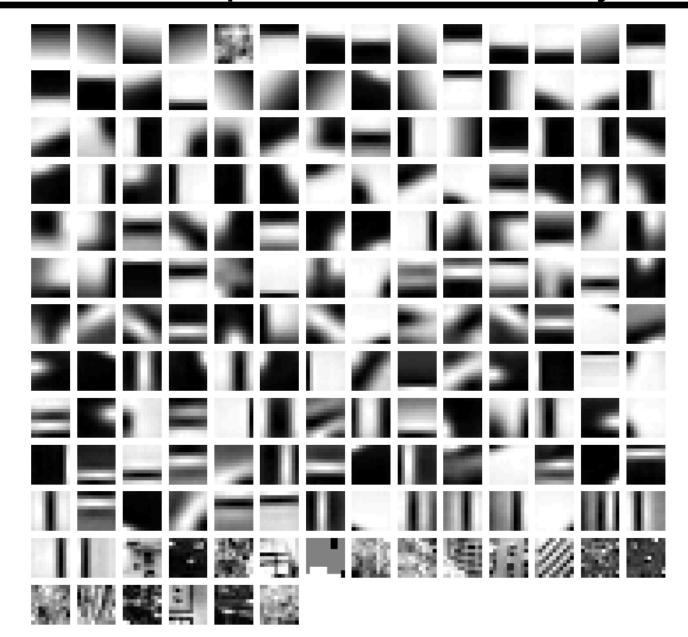




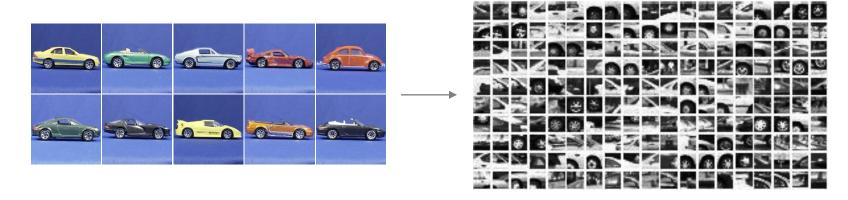
From what data should I learn the dictionary?

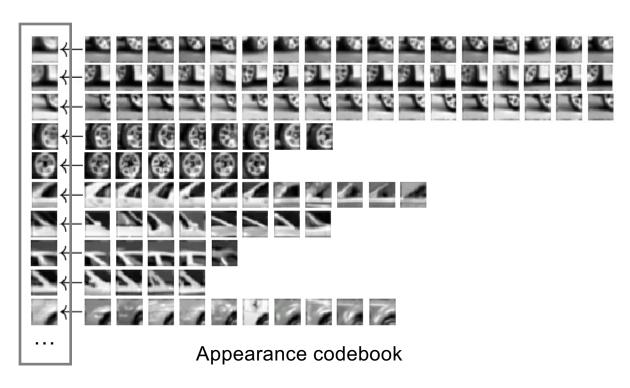
- Dictionary can be learned on separate training set
- Provided the training set is sufficiently representative, the dictionary will be "universal"

Example visual dictionary

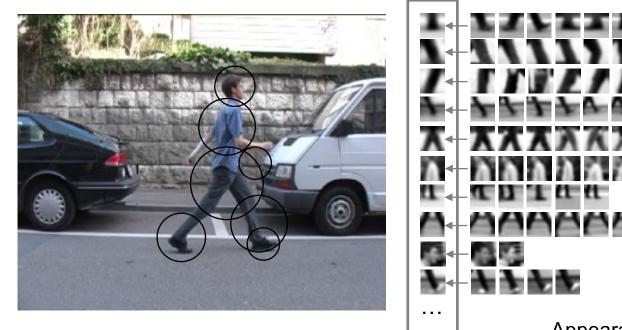


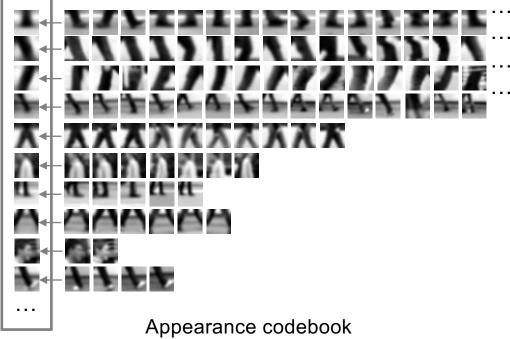
Example dictionary





Another dictionary





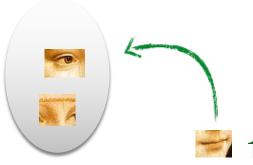
Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify:

Train and test data using BOWs



1. Quantization: image features gets associated to a visual word (nearest cluster center)

Encode:

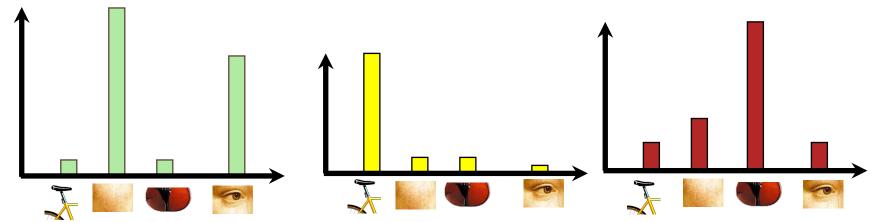
build Bags-of-Words (BOW) vectors for each image

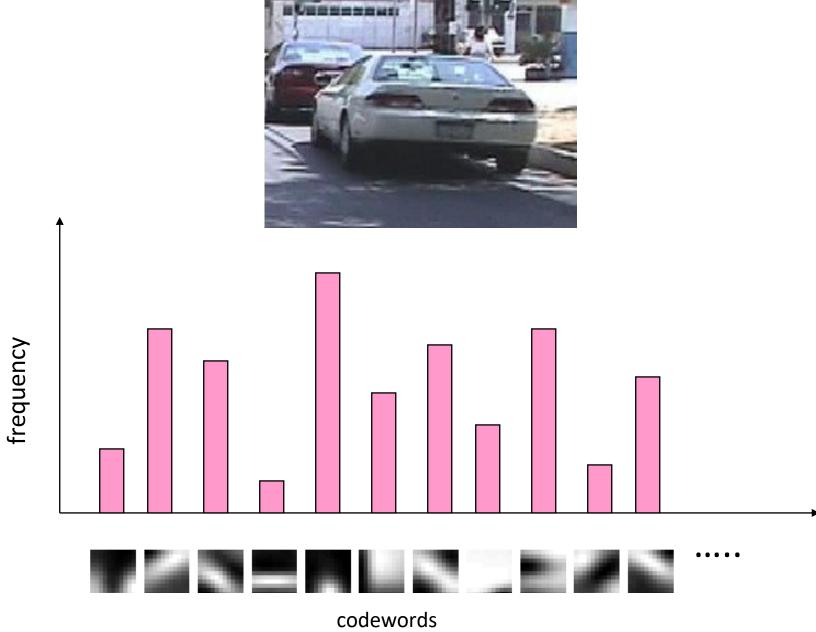
Encode:

build Bags-of-Words (BOW) vectors

for each image

2. Histogram: count the number of visual word occurrences





Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify:

Train and test data using BOWs

